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Background: �Syn toxicity is triggered by oligomerization of �Syn, and its formation is partly regulated by PUFAs.
Results: MPTP-induced neurotoxicity and �Syn oligomerization are attenuated in Fabp3�/� mice.
Conclusion: FABP3 is implicated in arachidonic acid-induced �Syn oligomerization and promotes dopaminergic cell death.
Significance: FABP3 aggravates MPTP-induced neuronal toxicity and �Syn accumulation.

�-Synuclein (�Syn) accumulation in dopaminergic (DA) neu-
rons is partly regulated by long-chain polyunsaturated fatty
acids. We found that fatty acid-binding protein 3 (FABP3,
H-FABP), a factor critical for arachidonic acid (AA) transport
and metabolism in brain, is highly expressed in DA neurons.
Fabp3 knock-out (Fabp3�/�) mice were resistant to 1-methyl-
1,2,3,6-tetrahydropiridine-induced DA neurodegeneration in
the substantia nigra pars compacta and showed improved motor
function. Interestingly, FABP3 interacted with �Syn in the sub-
stantia nigra pars compacta, and �Syn accumulation following
1-methyl-1,2,3,6-tetrahydropiridine treatment was attenuated
in Fabp3�/� compared with wild-type mice. We confirmed that
FABP3 overexpression aggravates AA-induced �Syn oligomer-
ization and promotes cell death in PC12 cells, whereas overex-
pression of a mutant form of FABP3 lacking fatty-acid binding
capacity did not. Taken together, �Syn oligomerization in DA
neurons is likely aggravated by AA through FABP3 in Parkinson
disease pathology.

Parkinson disease (PD)2 is a common motor disorder affect-
ing �1% of the population over 65 years of age worldwide (1).
Histopathologic features of PD are the loss of dopaminergic
(DA) neurons in the substantia nigra pars compacta (SNpc) and
the presence of cytoplasmic protein aggregates, known as Lewy
bodies (LBs) (2). �-Synuclein (�Syn), a 140-amino acid protein,
is associated with synaptic vesicles in presynaptic nerve termi-
nals (3), and �-sheet fibrillar aggregates, including �Syn, are

major components of LBs. �Syn accumulation is associated
with progressive loss of DA neurons, implicating that activity in
PD pathogenesis (4). In addition, duplication/triplication (5–7)
and missense mutations (A53T, A30P, E46K, H50Q, and G51D)
(8 –12) in the �Syn gene SNCA are linked to familial early onset
PD, suggesting that the mutations accelerate �Syn aggregation
and disease progression.

�Syn toxicity is triggered by oligomerization of �Syn in vitro
(13) and in vivo (14), indicating that oligomerization underlies
cytotoxic events in PD. However, mechanisms underlying �Syn
oligomerization in DA neurons are unclear. Previous reports
suggested that �Syn binds fatty acids, particularly long-chain
polyunsaturated fatty acids (PUFAs) (15, 16), and that �Syn
oligomerization and the appearance of LB-like inclusions in
cultured mesencephalic neuronal cells are enhanced by expo-
sure to PUFAs (17–19). In addition, abnormally high PUFA
levels are observed in �Syn-transfected mesencephalic neuro-
nal cells and in PD brains, whereas lower levels are seen in mice
lacking �Syn (17, 18), suggesting that PUFA binding to �Syn is
a key event in generating pathogenic �Syn oligomers.

Because PUFAs are insoluble in an aqueous cellular environ-
ment, fatty acid-binding proteins (FABPs) acting as cellular
shuttles are essential to transport them to appropriate intracel-
lular compartments (20). Among the FABPs, FABP3, which is
expressed in neurons (21), shows a preference for binding to
n-6 fatty acids (22). Indeed, Fabp3 knock-out (Fabp3�/�) mice
exhibit a 24% reduction in incorporation of arachidonic acid
(AA) into brain membranes and reduced levels of total n-6 fatty
acids in major phospholipid classes in membranes (23), sug-
gesting that FABP3 is critical for neuronal AA uptake and
metabolism. We report herein that FABP3 is highly expressed
in DA neurons and accelerates �Syn oligomerization, thereby
aggravating AA-induced �Syn oligomerization and its toxicity.

EXPERIMENTAL PROCEDURES

Animals—Generation of Fabp3�/� mice was described pre-
viously (24). Adult 12-week-old mice were used in all experi-
ments. Mice were housed under climate-controlled conditions
with a 12-h light/dark cycle and provided standard food and
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water ad libitum. Experiments were approved by the Institu-
tional Animal Care and Use Committee at Tohoku University.

MPTP-treated PD Model—Mice were treated once a day for 5
days with 1-methyl-1,2,3,6-tetrahydropiridine (MPTP, Sigma;
25 mg/kg, intraperitoneally) and then subjected to behavioral
(at 1– 4 weeks), immunohistochemical (at 4 weeks), and bio-
chemical (at 4 weeks) analyses.

Behavioral Tests—In training sessions for the rotarod task,
mice were placed on a drum (ENV-576M; Med Associates, St.
Albans, VT) rotating at 20 rpm until the latency to fall from the
drum exceeded 200 s. For test sessions, mice were placed on the
rotating rod and latency to fall was recorded for up to 5 min.
The beam-walking task was performed as described previously
(25).

Immunohistochemistry and Cell Counting—Immunohisto-
chemistry was performed as described previously (26). Primary
antibodies included the following: mouse monoclonal anti-
FABP3 (1:50, Hycult Biotechnology, Uden, Netherlands), anti-
ubiquitin (1:1000, Millipore, Bedford, MA), and anti-tyrosine
hydroxylase (TH) (1:1000, Immunostar, Hudson, WI); rabbit
polyclonal anti-FABP3 (1:500, ProteinTech, Chicago), anti-
�Syn (1:100, Santa Cruz Biotechnology, Santa Cruz, CA), and
anti-TH (1:1000, Millipore). Visualization of TH immunoreac-
tivity following diaminobenzidine (DAB) staining was per-
formed using the VECTASTAIN ABC kit (Vector Laboratories,
Burlingame, CA). For immunofluorescence, sections were
incubated with secondary antibodies, including Alexa 594 anti-
mouse IgG and Alexa 448 anti-rabbit IgG (1:500, Invitrogen).
FABP3 immunoreactivity was visualized using a TSA-Direct kit
(PerkinElmer Life Sciences). Immunofluorescent images were
analyzed using a confocal laser scanning microscope (LSM700,
Zeiss, Thornwood, NY). TH- or �Syn-positive cells were
counted in substantia nigra pars compacta (SNpc) on both
sides of the substantia nigra region (eight sections per
mouse, five to six mice per condition).

Immunoprecipitation and Immunoblotting Analysis—Im-
munoprecipitation and immunoblotting analysis was per-
formed as described previously (26). Striatal tissues or substan-
tia nigra tissues were homogenized in buffer containing 50 mM

Tris-HCl (pH 7.5), 0.5 M NaCl, 4 mM EDTA, 4 mM EGTA, 1 mM

Na3VO4, 50 mM NaF, 1 mM DTT, and protease inhibitors (tryp-
sin inhibitor, pepstatin A, and leupeptin) and treated with SDS
buffer with (denatured samples) or without (nondenatured
samples) boiling. Antibodies used included the following: rab-
bit polyclonal anti-FABP3 (1:500, ProteinTech), anti-�Syn
(1:100, Santa Cruz Biotechnology) and anti-TH (1:1000, Milli-
pore); mouse monoclonal anti-�-tubulin (1:5000, Sigma).

Plasmid Constructs—Human �Syn plasmid was purchased
from Abgent (San Diego). FABP3 plasmid was prepared as
described previously (26). Mutant FABP3(F16S) lacking fatty-
acid binding capacity (27) was generated using the KOD-Plus
mutagenesis kit (Toyobo, Osaka, Japan) according to the man-
ufacturer’s protocol.

Cell Culture and Viability Assay—PC12 cells were main-
tained in Dulbecco’s minimal essential medium (DMEM) sup-
plemented with 10% horse serum, 5% fetal bovine serum (FBS),
and penicillin/streptomycin (100 units/100 �g/ml) at 37 °C
under 5% CO2. Cells were transfected using Lipofectamine

2000 (Invitrogen) as described previously (26). Conditioning
living PC12 cells with AA was carried out as described previ-
ously (18). Briefly, at 32 h post-transfection in serum-free
DMEM, fatty acid-free bovine serum albumin (BSA, Sigma)-
AA (Sigma) complexes were added to the medium. These com-
plexes were prepared by mixing BSA with AA (at a 1:5 molar
ratio) in binding buffer containing 10 mM Tris-HCl (pH 8.0),
150 mM NaCl at 37 °C for 30 min. After treatment of cells with
AA for 16 h, a final concentration of 500 �M 1-methyl-4-phe-
nylpyridinium (MPP�, Sigma) was added for an additional 24 h.
Survival experiments were performed as described previously
(28). The appearance of condensed nuclear staining with DAPI
(Vector Laboratories) served as an indicator of cell death. Trip-
licate cultures were used for each condition, and each experi-
ment was performed at least three times.

In Vitro �Syn Oligimerization—Recombinant human �Syn
(Enzo Life Sciences, Farmingdale, NY) was incubated with AA
and recombinant human His-tagged FABP3 (Cayman Chemi-
cal, Ann Arbor, MI) at the indicated concentrations in binding
buffer containing 10 mM Tris-HCl (pH 8.0), 150 mM NaCl at
37 °C for 30 min. For detection by immunoblotting, samples
were mixed with SDS buffer without boiling.

Chemical Cross-linking Reactions—We performed chemical
cross-linking reactions to identify �Syn oligomerization (29).
For in vitro cross-linking of recombinant proteins, dithiobis-
(succinimidylpropionate) (DSP) (Pierce) was added to the incu-
bation mixture with a final concentration of 30 �M, and the
recombinant proteins were incubated at 37 °C for 30 min in PBS
containing protease inhibitors. The cross-linking reactions
were terminated by incubation with Tris-HCl (pH 7.5) at 50 mM

final concentration for 15 min at room temperature. Samples
were mixed with SDS buffer without boiling. For in situ cross-
linking in PC12 cells, transfected cells in 60-mm dishes were
washed with PBS and incubated with DSP (1 mM) at 37 °C for 30
min. The cross-linking reactions were terminated in the
dishes by incubation with Tris-HCl (pH 7.5) at 50 mM final
concentration for 15 min at room temperature. After chem-
ical cross-linking, cells were collected by scraping and
homogenized in buffer containing PBS with 1% Triton X-100
and protease inhibitors. Samples were mixed with SDS
buffer without boiling. We also detected �Syn oligomeriza-
tion in mouse brain samples using the native method with-
out chemical cross-linking.

Statistical Evaluation—All values were expressed as
means � S.E. Comparison between two experimental groups
was made using the unpaired Student’s t test for immunoblot
and immunohistochemical analyses. Behavioral tests were ana-
lyzed using two-way analysis of variance, followed by one-way
analysis of variance for each group and Dunnett’s tests. p � 0.05
was considered significant.

RESULTS

Fabp3�/� Mice Are Resistant to MPTP-induced DA Neuro-
degeneration in the SNpc—15-kDa cytoplasmic FABPs occur as
13 different isoforms that are widely distributed in various tis-
sues. Among FABPs, FABP3, FABP5, and FABP7 are expressed
in brain (30). FABP5 is predominantly expressed in immature
neurons and glial cells and FABP7 is in glial cells, whereas
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FABP3 is highly expressed in mature neurons (21). In the sub-
stantia nigra, strong FABP3 immunoreactivity was observed in
the SNpc but not in the substantia nigra reticular. That immu-
noreactivity was totally abolished in Fabp3�/� mice (Fig. 1A)
(26). In addition, analysis of TH immunoreactivity indicated
that most FABP3-positive neurons were dopaminergic (Fig.
1B).

To address the role of FABP3 in the pathogenesis of PD, mice
were treated with MPTP (Fig. 1, C–E). We observed no signif-
icant difference in the number of TH-positive neurons between
saline-treated wild-type (WT) and Fabp3�/� mice. In WT
mice, 4 weeks after the last MPTP injection, the number of
TH-positive neurons in SNpc was markedly reduced compared
with numbers seen in saline-treated WT mice (t � 5.39, p �
0.01, n � 6 each). By contrast, the number of TH-positive neu-
rons was unchanged by MPTP treatment in Fabp3�/� mice
(t � 0.84, p � 0.231, n � 6 each). The number of TH-positive
neurons was significantly rescued in MPTP-treated Fabp3�/�

mice compared with MPTP-treated WT mice (t � 4.38, p �
0.011). These results suggest that endogenous FABP3 aggra-
vates DA neurotoxin-induced cell death.

MPTP-induced Neurotoxicity Is Attenuated in the Striatum
of Fabp3�/� Mouse Brain—Next we confirmed that DA termi-
nals in the striatum are less damaged by MPTP in an Fabp3�/�

background. TH immunoreactivity in the striatum was reduced
in WT mice following MPTP treatment but was unchanged in
MPTP-treated Fabp3�/� mice (Fig. 2A). To quantify TH
immunoreactivity in striatal regions, we performed immuno-
blotting analysis and found that TH protein levels in the stria-
tum of MPTP-treated animals were significantly higher in
Fabp3�/� (66.6 � 7.4%) compared with WT (46.3 � 5.0%) mice
(Fig. 2B) (t � 2.27, p � 0.018, n � 8 –12).

FABP3 Deficiency Attenuates Motor Deficits Induced by
MPTP—We next confirmed that MPTP-induced motor defi-
cits were attenuated in Fabp3�/� mice by assessing animals
1– 4 weeks after saline or MPTP treatment using beam-walking
(Fig. 3A) and rotarod (Fig. 3B) tasks. Saline-treated WT and
Fabp3�/� mice showed no significant differences in perform-
ance on either motor coordination task. However, MPTP-

FIGURE 1. Genetic ablation of Fabp3 rescues DA neurons in MPTP-treated PD model. A, confocal images showing FABP3 (green) and TH (red) colocalization
in the substantia nigra. B, high magnification images of substantia nigra of wild-type mice. Bottom, enlarged images of boxed area in top merge. C and D,
representative photomicrographs showing TH immunoreactivity in the substantia nigra. Enlarged images in D correspond to respective boxed areas. E,
quantitative analysis of the number of TH-positive neurons in the SNpc. **, p � 0.01 in saline-treated WT versus MPTP-treated WT. †, p � 0.05 in MPTP-treated
WT versus MPTP-treated KO. n.s., not significant; WT, wild-type mice; KO, Fabp3�/� mice. Scale bars, A and C, 250 �m, and B, 20 �m.

FIGURE 2. MPTP-induced neurotoxicity is attenuated in the striatum of
Fabp3�/� mouse brain. A, representative photomicrographs showing TH
immunoreactivity in the striatum. B, shown are representative immunoblots
of striatal total lysates probed with various antibodies (left) and quantitative
densitometry analysis (right). **, p � 0.01 in saline-treated WT versus MPTP-
treated WT; #, p � 0.05 in saline-treated KO versus MPTP-treated KO; †, p �
0.05 in MPTP-treated WT versus MPTP-treated KO. WT, wild-type mice; KO,
Fabp3�/� mice; WB, Western blot. Scale bar, 300 �m.
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treated WT mice showed profoundly impaired motor perform-
ance on both beam-walking and rotarod tasks, although MPTP-
treated Fabp3�/� mice showed a much improved performance
relative to WT mice, especially in the rotarod test (beam-walk-
ing (F(3,71) � 13.5, p � 0.01) and rotarod (F(3,87) � 18.2, p �
0.001)).

FABP3 Deficiency Attenuates MPTP-induced �Syn Accumu-
lation in the SNpc—We next asked whether the resistance to
MPTP-induced DA neurodegeneration in Fabp3�/� mice is
associated with reduced �Syn oligomerization. Immunoblot
analysis using an �Syn-specific antibody showed that although
the levels of �Syn 15-kDa monomer and oligomers were
unchanged in both denatured and nondenatured extracts of
substantia nigra from saline-treated WT and Fabp3�/� mice,
significantly higher levels of �Syn oligomers were seen in non-
denatured substantia nigra extracts in WT compared with
Fabp3�/� mice following MPTP treatment (p � 0.01, n � 5)
(Fig. 4A). In denatured samples, levels of �Syn monomer and
FABP3 were significantly up-regulated in MPTP-treated WT
mice but not in Fabp3�/� mice (Fig. 4B) (�Syn (t � 4.1, p �
0.01) and FABP3 (t � 2.44, p � 0.05)). In confocal microscopic
analysis, consistent with our result in Fig. 1, the TH immuno-
reactivity in the substantia nigra was markedly reduced in
MPTP-treated WT mice. In addition, immunolabeling with
�Syn antibody showed significant �Syn accumulation in DA
cell bodies in the substantia nigra of MPTP-treated WT mice.
In contrast, only mild �Syn immunoreactivity was detected in
DA cell bodies of MPTP-treated Fabp3�/� mice (saline-treated
WT, 34 cells; MPTP-treated WT, 248 cells; saline-treated
Fabp3�/�, 42 cells; MPTP-treated Fabp3�/�, 89 cells; n � 5
each) (Fig. 4C).

FABP3 Makes Complexes with �Syn Oligomers—In previous
reports, purified recombinant human �Syn could bind radiola-
beled oleic acid (14C-18:1) and decosahexaenoic acid (22:6) in
vitro, and these fatty acids promote �Syn oligomerization (16,
18). We now asked whether the direct binding of AA to �Syn
promotes its oligomerization. After 30 min of incubation with-
out AA, the �Syn was only detected as monomeric form (15
kDa). In contrast, incubation with AA clearly promoted the
oligomerization of recombinant �Syn (60 –100 kDa). Impor-
tantly, the �Syn oligomerization was enhanced by adding
recombinant human FABP3 (50 �M AA p � 0.0016 and 100 �M

AA p � 0.024, in FABP3 absence versus presence, n � 3 each)
(Fig. 5A). To confirm the interaction between �Syn and FABP3
in vitro, we performed chemical cross-linking, a well estab-
lished biochemical method to identify �Syn oligomerization
(29). Consistent with the previous report, we detected cross-
linker-induced �Syn oligomers with 60 and 90 kDa. The
60-kDa formation was FABP3 concentration-dependent man-
ner (Fig. 5B, left, arrow). In addition, we found a few minor
immunoreactive bands with 70 and 95 kDa, which correspond
to FABP3 immunoreactive bands with 70 and 95 kDa (Fig. 5B,
right, arrowhead). Using FABP3 antibody, we also observed a
few minor �Syn-FABP3 complexes with 60 and 90 kDa, which
likely contain �Syn oligomers (Fig. 5B, left and right, arrow). To
further confirm an interaction between �Syn and FABP3 in
vivo, we performed immunoprecipitation of �Syn from sub-
stantia nigra extracts using �Syn antibody. The immunopre-
cipitates were then immunoblotted with FABP3 antibody.
�Syn-FABP3 oligomeric complexes with 65 and 90 kDa were
observed in MPTP-treated WT mice but not in Fabp3�/� mice
(Fig. 5C). In addition, most FABP3 immunoreactivity colocal-
ized with �Syn accumulation in DA cell bodies of MPTP-
treated WT mice (Fig. 5D, arrow), suggesting that FABP3
makes complexes with �Syn oligomers and promotes �Syn
oligomerization.

FABP3 Accelerates AA-induced �Syn Oligomerization and
Cell Death—Next, we addressed whether FABP3 overexpres-
sion accelerates �Syn oligomerization. We investigated MPP�-
induced �Syn oligomerization in �Syn-transfected PC12 cells,
with or without FABP3 overexpression. MPP� treatment
clearly increased the oligomer-to-monomer ratio in �Syn- and
FABP3-cotransfected cells compared with cells expressing
�Syn only (Fig. 6A) (213.8 � 1.8% of �Syn only cells without
MPP�, p � 0.01, n � 3 each). In addition, FABP3 immunore-
activity colocalized with �Syn inclusions in MPP�-treated
PC12 cells (Fig. 6B). MPP�-induced �Syn/FABP3 aggregates
colocalized with ubiquitin, a common marker in �-synucle-
inopathy (Fig. 6, C and D).

Finally, we addressed whether AA promotes FABP3-induced
�Syn aggregation. Interestingly, 100 �M AA treatment
enhanced levels of �Syn oligomerization in FABP3-transfected
cells (202.6 � 10.2% of �Syn- and FABP3-cotransfected cells
with MPP�, p � 0.01, n � 3 each), and oligomerization was
markedly attenuated in cells transfected with the FABP3(F16S)
construct, a mutant lacking fatty acid binding capacity (Fig. 7A)
(27). These results indicate that AA-bound FABP3 increases
�Syn oligomerization. More importantly, exposure of FABP3-
overexpressing cells to AA significantly promoted cell death in
response to MPP� compared with cells expressing �Syn alone,
and FABP3(F16S) overexpression significantly rescued cells
from AA-potentiated FABP3-induced cell death (Fig. 7B)
(mock, 25.0 � 4.7%; FABP, 49.7 � 5.9%; FABP3(F16S), 22.7 �
6.1%; FABP3�AA, 41.7 � 4.4%; FABP3(F16S), 84.0 � 7.4%;
FABP3(F16S) � AA, 54.3 � 6.1% of total cells, n � 3 each).

DISCUSSION

In this study, we report that FABP3 is implicated in the
MPTP-induced neuronal toxicity and �Syn accumulation. We
first observed that Fabp3�/� mice were more resistant to neu-

FIGURE 3. Genetic ablation of Fabp3 attenuates motor deficits induced by
MPTP. Quantitative analyses of motor coordination using the beam-walking
(A) and rotarod (B) tasks. A, “footslips” are defined as errors in a beam-walking
task. **, p � 0.01 in saline-treated WT versus MPTP-treated WT; #, p � 0.05 in
saline-treated KO versus MPTP-treated KO; †, p � 0.05; ††, p � 0.01 in MPTP-
treated WT versus MPTP-treated KO. WT, wild-type mice; KO, Fabp3�/� mice.
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rotoxin-induced DA neurodegeneration and motor deficits in
the murine PD model. The ameliorating effects seen in
Fabp3�/� mice were highly correlated with a reduction in �Syn
oligomerization in the SNpc. We then confirmed enhanced
�Syn oligomerization in response to up-regulated FABP3
expression and FABP3-mediated AA incorporation follow-
ing neurotoxin exposure. Based on these observations, we
suggest that FABP3 up-regulation by MPTP accelerates
�Syn oligomerization and accumulation, leading to DA
neurodegeneration.

Interestingly, others have proposed that �Syn could function
as an FABP, as it exhibits an �-helical lipid-binding motif sim-
ilar to class A2 lipid-binding domains seen in apolipoproteins
and which accounts for binding to membrane phospholipids
(16). However, titration microcalorimetry analysis indicates
that �Syn binds monomeric AA and decosahexaenoic acid with
only low affinity (Kd � 1– 4 �M) (31), which is about 2 orders of
magnitude less affinity than classical FABPs, including FABP3
(32). In addition, unlike the case with classical FABPs, NMR
spectroscopy has not identified specific fatty acid-binding sites

FIGURE 4. FABP3 deficiency attenuates MPTP-induced �Syn oligomerization in the SNpc. A and B, representative immunoblots (left) and quantitative
densitometry analyses (right) of proteins in a lysate from substantia nigra probed with various antibodies. *, p � 0.05; **, p � 0.01 in saline-treated WT versus
MPTP-treated WT; †, p � 0.05; ††, p � 0.01 in MPTP-treated WT versus MPTP-treated KO. C, left, confocal images showing localization of �Syn (green) and TH (red)
in the substantia nigra. At the bottom, enlarged images correspond to boxed areas. Right, quantitative analysis of the number of �Syn-positive neurons in the
SNpc. **, p � 0.01 in saline-treated WT versus MPTP-treated WT; #, p � 0.05 in saline-treated KO versus MPTP-treated KO; ††, p � 0.01 in MPTP-treated WT versus
MPTP-treated KO. Scale bar, 20 �m. WT, wild-type mice; KO, Fabp3�/� mice; WB, Western blot.
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or similarities in tertiary structure between �Syn and FABP
(33). Thus, regulation of �Syn by PUFAs may require a specific
lipid composition or the presence of neuron-specific lipid-
binding partners. FABP3 would interact with �Syn and AA to
promote �Syn oligomerization.

More importantly, FABP3 is highly expressed in DA neurons
in SNpc and plays critical roles in DA neurotoxicity in vivo.
Because Fabp3�/� mice exhibit markedly reduced incorpora-
tion of AA into brain tissue plasma membranes (23), we
hypothesized that DA neuroprotection in Fabp3�/� mice is
elicited by AA-dependent production of prostaglandin E2
(PGE2), which others have shown to be responsible for
cyclooxygenase-2 (COX-2)-mediated neurotoxicity in neuro-
inflammatory events (34). To investigate potential roles for
PGE2 production in Fabp3�/� mice, we determined levels of
released PGE2 in mesencephalic cultures treated with MPP�.
Unexpectedly, we observed no significant difference in PGE2
production between WT and Fabp3�/� mesencephalic cells.3
This observation indicates that neurotoxin-induced PGE2 pro-
duction does not account for inhibition of DA neuronal death
seen in Fabp3�/� mice.

MPP�, a toxic metabolite of MPTP, is an inhibitor of com-
plex I in the mitochondrial electron transport chain and a sub-
strate for the dopamine transporter, therefore accumulating in

DA neurons and eliciting neurodegeneration (35). Interest-
ingly, the N-terminal 32 amino acids of human �Syn contain a
cryptic mitochondrial targeting signal (36), and �Syn is accu-
mulated in the mitochondria of post-mortem PD brains (36).
FABP3 overexpression causes mitochondrial dysfunction and
induces apoptosis in the P19 mouse teratocarcinoma cell line
(37); FABP3 may also induce a mitochondrial dysfunction and
is implicated in oxidative stress induced by MPTP toxicity.

In our study, we found the significant reduction of the num-
ber of �Syn-accumulated cells in DA cell bodies of MPTP-
treated Fabp3�/� mice compared with MPTP-treated WT
mice (Fig. 4C). However, MPTP-treated mouse models do not
induce �Syn-containing inclusions, similar to LBs (2). Further
study will be required to investigate some differences in forma-
tion of �Syn-containing inclusions between the MPTP treat-
ment model and the PD model by rotenone treatment (38) or
ubiquitin-proteasome inhibitor treatment (39).

Increased AA intake is reportedly correlated with PD risk
(40), and higher levels of AA and total n-6 PUFAs have been
observed in post-mortem PD brains than healthy controls (41).
Proteomic analysis of human substantia nigra indicated higher
levels of FABP3 protein in PD patients than in control subjects
(42). Higher FABP3 levels have been reported in the sera of
patients with dementia accompanied by LBs (43) and of PD
patients (44) compared with Alzheimer disease patients and
nondemented controls. Although further studies are war-3 N. Shioda and K. Fukunaga, manuscript in preparation.

FIGURE 5. FABP3 makes complexes with �Syn oligomers. A, left, recombinant human �Syn (r�Syn) was incubated with or without AA at the indicated
concentrations at 37 °C for 30 min. Samples were immunoblotted with anti-�Syn antibody. Of note, �Syn oligomerization was enhanced by adding recombi-
nant human FABP3 (rFABP3). Right, quantitative densitometry analysis. *, p � 0.05; **, p � 0.01 in the presence versus absence of rFABP3. B, recombinant human
�Syn at a concentration of 10 �g/ml was cross-linked using 30 �M DSP in the presence or absence of recombinant human FABP3 (10 or 100 �g/ml). Samples
were immunoblotted with anti-�Syn (left) or with anti-FABP3 (right) antibody. C, coimmunoprecipitation of �Syn and FABP3 in total lysates from the substantia
nigra. Extracts were immunoprecipitated (IP) with anti-�Syn antibody, and immunoprecipitates were then immunoblotted (WB) with anti-FABP3 antibody. D,
confocal images showing localization of �Syn (red) and FABP3 (green) in the substantia nigra. �Syn and FABP3 are colocalized in DA cell body (arrow). Scale bar,
D, 20 �m. WT, wild-type mice; KO, Fabp3�/� mice.

FIGURE 6. FABP3 overexpression accelerates �Syn oligomerization in PC12 cells. A, representative immunoblots (left) and quantitative densitometry
analysis (right) of PC12 cell extracts probed with various antibodies. **, p � 0.01 in mock cells plus MPP� versus FABP3-transfected cells plus MPP�. WB, Western
blot. B, confocal images showing localization of �Syn (green) and FABP3 (red) in PC12 cells with or without MPP�. At right, enlarged images correspond to boxed
areas. C, confocal images showing localization of ubiquitin (green) and FABP3 (red) in PC12 cells with or without MPP�. At right, enlarged images correspond
to boxed areas. D, confocal images showing localization of ubiquitin (green) and �Syn (red) in PC12 cells with or without MPP�. At right, enlarged images
correspond to boxed areas. Scale bars, B–D, 20 �m.
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ranted, our findings suggest that up-regulation of FABP3 pro-
tein and increased AA/PUFA incorporation likely function in
LB formation in PD. These results also provide an intriguing
clue with respect to a potential molecular target for neurode-
generation in human �-synucleinopathies, including PD.
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